Finiteness and Torelli Spaces
نویسنده
چکیده
Torelli space Tg (g ≥ 2) is the quotient of Teichmüller space by the Torelli group Tg. It is the moduli space of compact, smooth genus g curves C together with a symplectic basis of H1(C;Z) and is a model of the classifying space of Tg. Mess, in his thesis [12], proved that T2 has the homotopy type of a bouquet of a countable number of circles. Johnson and Millson (cf. [12]) pointed out that a similar argument shows that H3(T3) is of infinite rank. Akita [2] used an indirect argument to prove that Tg does not have the homotopy type of a finite complex for (almost) all g ≥ 2. However, the infinite topology of Tg is not well understood. The results of Mess and Johnson-Millson are the only ones I know of that explicitly describe some infinite topology of any Torelli space. Moreover, although Johnson [10] proved that Tg is finitely generated when g ≥ 3, there is not one g ≥ 3 for which it is known whether Tg is finitely presented or not. The goal of this note is to present a suite of problems designed to probe the infinite topology of Torelli spaces in all genera. These are presented in the fourth section of the paper. The second and third sections present background material needed in the discussion of the problems. To create a context for these problems, we first review the arguments of Mess and Johnson-Millson. As explained in Section 2, Torelli space in genus 2 is the complement of a countable number of disjoint smooth divisorsDα (i.e., codimension 1 complex subvarieties) in h2, the Siegel upper half plane of rank 2. More precisely,
منابع مشابه
Category and subcategories of (L,M)-fuzzy convex spaces
Inthispaper, (L,M)-fuzzy domain finiteness and (L,M)-fuzzy restricted hull spaces are introduced, and several characterizations of the category (L,M)-CS of (L,M)-fuzzy convex spaces are obtained. Then, (L,M)-fuzzy stratified (resp. weakly induced, induced) convex spaces are introduced. It is proved that both categories, the category (L,M)-SCS of (L,M)-fuzzy stratified convex spaces and the cate...
متن کاملCoherent and finiteness spaces
This short note presents a new relation between coherent spaces and finiteness spaces. This takes the form of a functor from Coh to Fin commuting with the additive and multiplicative structure of linear logic. What makes this correspondence possible and conceptually interesting is the use of the infinite Ramsey theorem. Along the way, the question of the cardinality of the collection of finiten...
متن کاملTorelli Theorem for the Moduli Spaces of Pairs
Let X be a smooth projective curve of genus g ≥ 2 over C. A pair (E, φ) over X consists of an algebraic vector bundle E over X and a section φ ∈ H(E). There is a concept of stability for pairs which depends on a real parameter τ . Here we prove that the third cohomology groups of the moduli spaces of τ -stable pairs with fixed determinant and rank n ≥ 2 are polarised pure Hodge structures, and ...
متن کاملOn the transport of finiteness structures
Finiteness spaces were introduced by Ehrhard as a model of linear logic, which relied on a finitess property of the standard relational interpretation and allowed to reformulate Girard’s quantitative semantics in a simple, linear algebraic setting. We review recent results obtained in a joint work with Christine Tasson, providing a very simple and generic construction of finiteness spaces: basi...
متن کاملTransport of finiteness structures and applications
We describe a general construction of finiteness spaces which subsumes the interpretations of all positive connectors of linear logic. We then show how to apply this construction to prove the existence of least fixpoints for particular functors in the category of finiteness spaces: these include the functors involved in a relational interpretation of lazy recursive algebraic datatypes along the...
متن کامل